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Evaluation of Singular Electric Field Integral Equation (EFIE) matrix elements

Introduction

The electric field integral equation (EFIE) solution for scattering from an arbitrary
three-dimensional geometry was outlined in a paper by Rao, Wilton and Glisson (RWG)
in 1982 [1]. Since that time their formulation has been incorporated into many computer
codes to solve a large variety of scattering and radiation problems, e.g. EIGER,
Carlos3D, FISC, Feko, MoM3D, IBC3D [2-7]. Experience has taught us that the
accuracy of quantities derived from the original RWG solution are a function of the
electrical size of the problem, which is reflected in the order of the system of equations
that must be solved, and the electrical dimensions of the triangular patches [8].

The ill-conditioned matrices that result from electrically small patches can be
remedied using of the ‘loop-star’ approach [9]. For electrically large problems, with
large order systems of equations, the physical fidelity of the solution depends on the
numerical accuracy of the Galerkin inner products which populate the method of
moments (MoM) impedance matrix. A new treatment of these inner products is
presented here which improves the accuracy of the singular surface integrals that result
from the Galerkin formulation.

The question of accuracy has been a subject of research in the computational
mechanics field for some time. Recently, the computational mechanics community has
begun formulating boundary integral equation (BIE) solutions of Fredholm integral
equations using a Galerkin descretization [10,11]. The focus of their research was to
obtain high accuracy in the numerical treatment of the resulting singular 4-dimensional
integrals. The methods developed for computational mechanics can be directly applied to
the Galerkin (RWG) solution of the EFIE to obtain high accuracy in the numerical

integration of the singular surface integrals that are fundamental to the numerical
solution.

Galerkin Solution of Electromagnetic EFIE

The traditional RWG solution will be summarized here for objects that are

represented by perfectly conducting surfaces. The time dependence is given by ™.
The electromagnetic problem is formulated using the electric field integral equation

(EFIE) which is then used to compute unknown electric currents, J , on the surface of the
object. These surface currents are integrated to produce the desired quantity, for
example, the far field scattering amplitude.

The unknown currents are expanded in terms of RWG vector basis functions on
the surface. A single RWG basis set element, shown in Figure 1, consists of a pair of
triangular patches that share a common edge. The Galerkin solution of the EFIE
generates a system of linear equations which has the amplitudes of the RWG current

Manuscript approved June 8, 2001.




D. Taylor 2

expansion as unknowns. This system of equations can be written in the following
compact form,

ZJ=V. (D)

The square matrix Z is dense and complex valued. This system of equations is

solved using standard numerical linear algebra methods. The vector ¥ represents the
electric field excitation on the structure, usually a plane wave. The individual elements
of the Z matrix are inner products of an RWG basis and testing function with the EFIE
operator for the PEC surface boundary condition. These inner products generate double
integrals over pairs of RWG basis functions and appear as a sum of 4 terms,

Zy= Y28, )

P.g=t1

Each term in the sum represents the interaction of one triangle with another in the RWG
basis and testing function pair. This interaction is computed using the following
expression,

S£S? propl 1 -,
Z3" = jkn A’,, kq L4 dA"IdA"[ v —pjg(r,r ), 3)
where g(7,7')is the free space Greens function,
)= @
glr 4 I# —
and,
Jj=v-1,
2nf .
k =—>-,c, = speed of light, f = wave frequency,
Co
n= Ll ,impedance of free space,
&o

A7, 4] = area of each triangle,
P, Pl = vector from vertex oppositeedge /, ,
S?,S¢ = £1, current flow toward or away from edge,
[,,1, = edge lengths associated with RWG triangle basis.
A numerical difficulty arises in evaluating (3) over regions where the denominator of the

Greens function becomes zero. When this occurs, the weak singularity in the integrand
of the integral must be interpreted in a Cauchy principle value sense.
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The treatment of this singularity has generally consisted of employing a

singularity extraction approach where the Greens function in the integrand is split into
two parts,

- Jk|F-7| e—jk[?-?’| -1 1

g(F,7) = 47{‘?—7'l = 4”17—71 + 47[‘;:__;2,‘ . %)

This produces two integrals, the first has a regular integrand, which is numerically
integrated, and the second that is evaluated analytically [12]. This approach is limited
because the integrand still contains a R~ term to be integrated numerically, requiring a
large number of evaluations for a given accuracy. This method has also been applied to
formulations with curved geometry where the singularity extraction is the first term in a
Taylor’s series, however this approximate method can be improved upon with the
formulation outlined here.

Erichsen and Andra [10,11] encountered integrals of the type shown in (3), and
others with higher order singularities, and were able to completely remove the singularity
using a combination of relative coordinates, changing the order of integration and
Duffy’s transformations [13]. In addition to completely removing the singularity their
method also allowed some parts of the 4-dimensional Galerkin integrals to be evaluated
analytically, thereby reducing the effort required to numerically evaluate the entire inner
product. Their technique for regularizing multi-dimensional singular surface integrals is
applied here to the traditional RWG EFIE solution.

Regularization of Singular Surface Integrals

The integrals in (3) can be categorized into 5 classes. The criterion is based upon
the geometrical relationship between the two triangular regions, labeled AJ’.’ ,Al. The

fundamental distinction is whether or not the two triangles intersect in some manner, and

if they do not, then how close or far apart are the two triangles. The 5 classes are
summarized in the following table.

Type Relationship Distribution of Singularity
1 Common facet two dimensional planar
2 Common edge one dimensional line
3 Common vertex single point
4 Distance < Facet Dimension Near Singular
5 Distance > Facet Dimension Non-Singular

Types 1 through 3 have singularities in the integrands and explicit formulas will
be developed to analytically remove the singularity. Type 4 integrals are described as
near singular and are studied elsewhere [14]. Type 5 present no singular behavior and
can be evaluated using standard numerical methods for integrating regular functions over
a triangular region [15].

The procedure for transforming (3) into a regular, non-singular, surface integral
involves the following steps.
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1. Introduce relative coordinates.

2. Represent the domain of integration such that the outer integration is
over the relative coordinates.

3. Recombine symmetric integration domains.

4. Use Duffy’s coordinates to remove the weak singularity in the
remaining singular integrals.

5. Employ ordinary gaussian quadrature on the remaining regular
integrals.

Simplex Coordinates

The integral in (3) is evaluated by transforming from ordinary 3-dimensional
Cartesian coordinates to a simplex coordinate system. In simplex coordinates each
triangle is mapped to a standard unit triangle. The unit triangle is defined by,

(5,6,):0< ¢ <1, 0<¢§, <. (6)

A triangle in 3-dimensional Cartesian space with vertices, 17,,172,173, is mapped onto this
unit triangle such that,

V= (&.8)=(0,0)
V, = (£.5)=(10) (7)
Vy=(6.8)=())

Any point in the triangle defined with three vertices can now be described using the 2
simplex coordinates.

Ignoring the constants outside the integral shown in (3) the transformed integral
using two sets of simplex coordinates is,

”(M_._] (F,F)dAPdAS = 247247 j j j j Mdnzdmdédé, ®)

éwéﬂmﬁwﬂ

where the integrand has now been written as ratio of a regular function divided by a
distance function. The constants in front of the new integral are the Jacobian of the
transform from Cartesian to simplex coordinates.

Decomposition of the domain

The 4-dimensional Galerkin inner product integral is decomposed into six
separate 4-dimensional integrals in the process of converting to relative coordinates and
interchanging the order of integration. Explicit details of the process are presented here
because the method allows for variations, for example curved triangular patches or
rectangular patches, to be analyzed using the same approach.
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The fundamental quantity to evaluate is the Galerkin inner product integral.

Using simplex coordinates, 7,Z , the integral is converted to the following standard
form,

f I f If () =dn,dndg,dg, . )

61=0 £, =0 =01,=0 R(§ )

The order of integration for &; and m; is interchanged in preparation of a conversion to
the relative coordinates,

j j j J Mdﬂ2d§2d”ld§l' (10)

§=07=0£=0 '71"0

Relative coordinates are introduced next, the relative coordinates are formed from the
simplex coordinates in the following manner,

=1 -51:
"fz-

The integral using relative coordinates as the integration variables is now written in the
following form,

(11)

A e X))
éj_ L ; L | j . R el (12)

The domain of integration of this integral is shown in Figure 2. The goal is to

interchange the order of integration in the integral so that the outer integrations are over
the relative coordinates u; and ..

Examining the integration domain in Figure 2 facilitates the interchange of order
of integration. By inspection the &, u; integral upon interchange becomes,

1 1-4 0 1 1 Iy

I I"'duldfx=_( I"'dfldul““j I"'dfldul- | (13)

S=0u=-¢ w=—1§=—u u=0&=0

Note that the original domain, a single trapezoid, has now been divided into two
triangular regions. The &,, u, integration interchange produces three new integrals,

& U+ -5, 0 & LS| u+§) G+ -uy
[-dwds= [ [-dgdu+ | [-dédu+ [ [ dédn,. (14)
£5=0 w=-4 wy==§ &=—1y 1=06,=0 s §=0

The original domain of integration has been divided into two triangular and one
rectangular region.
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Collecting together the six new integrals that result from the initial interchange of
integration variables produces the following set of terms,

R S N N )
B MI.L -f.;[—ul u2£¢. 62:_["2 W§2du2d§1dul ) (15)

1"-—} j j Ii(—g——”—)dézduzdé’,dul, (16)

u=—1§=—th u;=0 §,=0

0 1 urh G(wy-u)
IB:,,LgJ_“'L ‘5_[0 %i;dézduzdfldul’ 17)

I-u - 0

.[ j I J‘ %&dzduzdédup (18)
=0 & =0 =~ &=,

-y u

j [] j g—gl‘—)d Jdu,dédu,, (19)
=0 &=0u,=0 & =0

I6 = j‘ lj':xl u,j_s‘l §1-(]3-“l)?f2_§_§_4)d§2du2d§1dul (20)
w=05=0uy=uy &=0 é )

The next step is to interchange the order of the, &;, u,, integration in the six
integrals. Starting with I', the interchange results in two terms,

J.I

The completed interchange of integration variables now produces a split I' term,

du,d&, = j j‘~d§1du2+i i~--d§,du2. Q1)

uy=-1(=-u, uy=uy § =

','~——.o

=L+, = u!‘_]u'j{_w:‘:" gj-u gf‘ f; &,dé du,du,

+ j J' j I f(é: £) “=22d gy d G duyduy.

u==luy=u §=—u &=~u, (é —)

(22)

The result for I is,
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f j jg—g—”—)d A& dudu,, (23)
=0 & =—u &=0

I’ is similar to I' because it produces two terms,

0 1 §~(uy—u)
P=P+E= j | f SEB e 4t dudu
u=-lwy=ty §=—uy §=0 R(é )

0 I+ 1 &-(uy~u)

+ f f &0, E,dE dudu,.
R(&. 1)

="l =0 §=uy-u  5=0

24)

Interchanging the order of integration for the remaining, I*, P and I° integrals produce
only a single term in each case,

0 1

f [ f f*(éﬂdfzdéduzdul, (25)
=0 yy =1 -1 &=—u, ;2_-,,2
,[ ]l. IT ? I—(é—uzd A& duyduy (26)

=0 u,;=0 & =0 £=0 R(é —*)
1 0 by G-(u-u)
u
U B %—;dfzdf{duzdu, @7)
w=0w=u §=uy—u;  5H=0

The final step is to combine integrals together with overlapping domains. The naming
convention here is used to reproduce the work of Andra,

E =L+ +[ = j i j { ? + i +§-(]rul)}f(§ HED e 1t dua,

Rl PR ) §;=¢,1 :;_ul)R(f u) 8)
- jj é j 52 j —dﬁg “; £, dE duyd,
g=r=| | [ ?ﬂg—@d@d;duzdul 29)

=0 ;=0 §=0 £,=0 R(é:

0 l4y 1 &—(uy—u)

= I _[ J' f %@dé‘lduzdul (30)
t=-11y=0 E =ty -ty £,=0

I j lj j Mdgzdg,duzdul 31)

u=0wy=t-1 §=~1m, & =‘“2
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Es=1 = J- _‘ _i. IMdfzdélduzdul (32)

u=-luy=—14§=-u, 52—‘“2

1 1 -y §~(uy-u,)

E, =1 = SED) e e i (33)
6 R(g ) 2 1 2

u=0wy=u G=uy—yy  §=0

These six integrals, E; through Eg, represent the domain decomposition of the original
single domain integral.

Common Facet

The Galerkin inner product for this type involves integrating over identical
triangular facets. The evaluation of the inner product integral depends on the functional

form of the singularity in simplex coordinates. The Greens function spatial distance
term,

=[F-7 (34)

expressed in the transform coordinates becomes,

F=1-&)V, +(& -V, +EV,
7= =)V, +(m =1V, 7V,
FeP'=(m =&V, + (- & = +E)V, +(& - 1)V, (35)
=uV, +(u, —u)V, - uV,
=u(V =V, - V) +u,V,

and is a function of the relative coordinates only. The scalar distance is,

R= \/(ul(vl "\72 4(/3)+u2{72)- (ul(vl - \72 -—V3)+u2\72),

(36)
= Jaud + 2e,uu, + o,

and can be expressed in terms of a simple polynomial in the relative coordinates only.
The coefficients are,

i
}

«(V,=V,-V,),
: (37

K
It
VY
!

N
<1

—~

i
|
|

R
!
~~
|
[N)
I
w
N’ v
~

|

|

R
1]
P

This allows the Greens function portion to be moved outside the inner two integrals in the
inner product.
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The remaining parts of the integrand involve dot products of vectors in the plane
of the triangle, each vector is defined with a starting point in a prescribed vertex of the
triangle and an ending point that resides in the triangle. Even though the case considered
here is for identical facets, or triangles, the two vectors in the dot product are not
necessarily the same. In 3-dimensional Cartesian space let these two vectors be denoted
by,

py=r=V;
Py =7 =9,

(38)

Expressing these vectors in terms of the simplex coordinates for the most general case,

B, =F=7, =(1-E)WV, +(& - &)V, + £V, -7, (39)
Py =F -V, = (1—771){/1""(771 "'772){[2’ +771‘73' Vi

The dot product generates the following expression,
ﬁj Oy = ((1 - é:l)vl +(& - éz)vz + §1V3 - i;j)' ((1 - ”l)vl' +(m, - 772){72’ +771V3, - {;k) (40)
Expanding this and simplifying the resulting expression,

Py P = ((1 ~EWV +(E &V, +&V, _i;j)' ((1 -V +(n, - )V, 47, V5 —vk)
= BT+ V=) -9+ 9, -5 ) (V3 + V-V -1,V + i -5,) @)
= Bém + Bém, + B&om + B, + Bs&, + B, + By + By, + o

where again the function can be written as a polynomial. The coefficients of the
polynomial are given by,

B =V, +V, = V) (V3 +V; = V)

o=~V +V;- V)V,

By =V, + V= V)-(V/-%,)

By =5

Ps=Y,-V, (42)

Bs = "vz '(v{ =)

Br=(V=7)- (V3 + V- V)

Py=-(% =%,

B = (vl —{;j)'(vl'—gk)

The same dot product in relative coordinates is,
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f—jj P = B&(u + &)+ Pyt (u, +86)+ B (u + &)+ B (u, +£,)E,
+ B8, + By + Br(y +&)+ By(u, + &)+ B

Collecting together the expressions for the Greens function and the dot product the
original integrand becomes,

(43)

[___p, :’* _ 7:7} o(7,F") = %h(é? 0)g(#). (44)

It is this function that will be used as the integrand for the six integrals that span
the domain of integration of the original inner product. However, the six integrals can be
paired together to form three integrals because of the symmetry of the integration
domains. This pairing of integrals with symmetric domains will simplify the problem.
First consider the integrals E; and E,,

0 0 1 §-(-u)
E=[ [ | [ phCuemadgdeduds, (45)
w=lw=y §=—1 &GH=-u,
1 ou -y &
E= [ [ | | PhEwe@ntdsdudy, (46)

=0 u,=0 £,=0 £,=0
Let £ =&'~% and % = -7 inE,. The results are,

0 0 1 G~(m~y) 1

J I T | phEmeasdsdudy
w=—l uymty Gty Eyomtty

0 0 1 §Hz-2)

I j .‘- .[ %h(é?,—f)g(—f)dé’zdédzzdzl (47)

=lz=5 4=z &=z

1z -z § 1 -
J f ] JLZh(§'+zs—f)g("f)dé'dé’{dzzdzl

;=0 z,=0 §=0 £;=0

m
i

The limits of integration are identical to that of E, so that the two integrals can be
combined together,

Loy 1w &
1, - 1 = _ _ _
I =E+E, = | | j j —h(E,0)g(@)+— (& +7,~7)g(-u)EdE duydu,. (48)
u|=0u2=0§l=0§2=04 4
The Greens function is an even function of the argument,

g(-u)=g(u), (49)

the new integral, /|, becomes,
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Low - g

L=E+E={ [ | j-}{h(f,a)m@ +1,-2) g(@)EdE duyd, . (50)

U =01, =0 §;=0 §,=0

The integrals E; and E4 can be combined together in a similar fashion. Substitute
E=&'-uwand i=-Z inE;
0 l+y 1 &—(u,~ty)

B[] N I § | P D)g@dEAE dncy

| (1)
1 0 1-z; & 1 _
=[] 71+ 2-2)(-2 )G dgidndz,
5=0 zp=2;-1§{=-2, =0

This is combined with E;,

t-u

f f | I—h(rf u)g(w)ds,ds du,du, (52)

=0y =ty ~1 §=~1u, §2=‘"2
to produce,

0 __

J,=E,+E, = j j | j {h(§ )+ h(E +7,-7) g(@)dE,dEdudu,.  (53)

=0 uy=u~1 §=—uy &= “2

Lastly, combine Es and E together by substituting & = £'—#% and % = ~Z in Es,

1 1 oy §—(uy-up)

L=E+E=[ [ [ | %{h(f,ahh(f +1,-0) Yg(@)dE,dE duydu, . (54)

u=0wy=u; =~y £,=0

At this point the original integral has been successfully transformed into a sum of three
integrals with the desired order of integration, this result can be written simply as,

_[ j j. I%‘]Qdﬂzdﬂldfzdéel iJi- (55)
£=0£6=07m=07,=0 i=1

However, the singularity in the Greens function is still present. The next step is to
employ a series of Duffy coordinate transformations that will eliminate the singularity.
The removal of the singularity will also convert the three integrals into one regular

integral.

Duffy Transformations

The Duffy coordinate transform is used to remove a singularity at the origin in
two dimensional and higher order integrals. Each of the J integrals has a singularity at
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the origin, namely # = 0. The (u;,u;) coordinate integration domains as shown in Figure
3 for each of the J; integrals.

In each of the J integrals the Greens function contains a singularity that is a
function of the relative coordinates only. In relative coordinates, the Greens function for
the common facet configuration is,

e Jhy ey +2emu, oyl

2 2’
47r\/cz,u1 +2a,uu, + yu;,

g(#) = (56)

The J; integral over the relative coordinates uses the standard two-dimensional Duffy
transform. Consider the part of J; that is the integral of the Greens function over the
relative coordinates only,

1 4 kg +2a5uu, ol

J T

2 2
=010 47r\/ oguy +20,uu, +a,u,

)} o
u,) \on

of these coordinates into the integral,

duydu, . (57)

Make the substitution,

1 4 j ik ey ¥2ayuu, vyl 11 Jkaovje+2amray’
€
j f - duydu = — o--dndw.
=0 1,=0 47r\/aflul +20,uu, + o, =070 47za)\/ocl +2a,n+a5n
(39)

The singularity has been converted into a single term, w, in the denominator that is
exactly canceled out by the Jacobian of the coordinate transformation in the numerator.
The resulting non-singular integral is,

1 1 ejkw \jal+2a277+a3172

= - -dndw. (60)
=0 =0 47r\/ a, +2a,n+asn

However, J, is not in the proper form for a direct Duffy coordinate transform,

1

S [ [ du, (61)

u =0 ty =11

e
N

but can be put converted to standard form by substituting z = u, —u,,
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I, = j j---dzdul. (62)

The Duffy transform for this type is,

ul = ﬂwa

(63)

z=w,
converting back to the original relative coordinates produces the necessary transform,

u1=77(0a
z=u-u =0, (64)
u, =u —o=a(n-1).

Using this transform in the integral J,,

1 0 e ij lzlu,z Uty +a3u§

J

2 2
=0 =141 475\/ oy +20,uu, + oy

co-duydu, =
(65)

11 a0y +2ama’ (r-Dras? (-1

@---dndw,
oo 47\, (M) +2a,n0% (7-1) + a0 (77 - 1)?

removes the singularity and generates a regular integral. The final term in (55), J;, has a
form similar to that of J,,

J3=j[ j~-~du2dul, (66)

=0 uy =4y
the Duffy coordinate transformation to use is,

ul = Uwa
67
U, = a. ( )

The three separate Duffy coordinate transformations have projected the relative
coordinate integration in the J integrals onto the same domain. This is the first step in
combining the three J terms together so that can be joined together in one integral.

Analytic Integration over &;, &,

The inner integration over the & coordinate in (50), (53) and (54) can be

performed exactly since the integrand depending on these coordinates can be expressed

as a simple polynomial. Expanding and summing the various terms in the integrand
produces the following expression,
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1¢ - _ = _ 2 2 2
_{h(‘f,u)'*’h(‘f + ua"”)}z a,s¢, +a14§22 +a;,8 8, +aé + a6, +agu +agu; +aguu,
4

+a,u +agu, +abu +a,bu, +abu +a,bou, + a.

(68)
The coefficients of the polynomial are,
as =20 a,=2P, a;=20,+2p;, a,=20+2p0, a,=2p +25
ao==pB a=-B, a=-p-p5 a; = fs as = fy (69)

as; = a, = B a, = p, a, = p, a,=ﬂ9—4/k2

where the £'s are computed from (42). The analytic integration in the three J integrals
require the following six basic forms,

b &+d 2 2

K(a,b,cd)= | Id{zdfl —4 +é:1-‘i(d—c) (70)
g=ag=c
b g+d & b -a°
K'(a,b,c,d)= | j(;dgzdg, +=——(d=0) (71)
&=aéy=c
b &i+d a b -4
K'ab,ed)= [ [gdEds = +=—5—(d-0) (72)
Gi=a f=c
b &+d
Kabed)= | [aagde = OO D g
§i=a §=c
b &ixd (b+d)' ~(atd) |
K'(abcd)= [ [&d&dé = = (b a) (74)
é=a &=c
b §i+d d? -2
K'abed)= [ [&EdEdE = +dK2(abcd)+ K'(a,b,c,d) (75)
&=a &=c

The inner integration in the J; integral is,

I~y & . _
[ [{n& )+ nE +a,-m) Jag,de, (76)

§=0£5=0

let this be denoted as L,(,,u, )and because it can be integrated analytically, be re-written
as

2
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a,K*(0,1-14,,0,0)+a,,K*(0,1-%,0,0) +a,K> (0,1 - 14,0,0) +
(a, +agu, +a,,)K' (0,1~ 4,,0,0) +(a,, + asu, + a,u,)K>(0,1-1,0,0) +
(@ +ag +aguu, + a;u, +agu, +a,)K°(0,1-1u,,0,0).

(77)
Likewise, denote the J, inner integration as L,(#,,u,) which is equal to,

2 5
ay K (—uyl —uy,—1,,0) + ay K (~uy 1= 1,~1,,0) + 0, K (—uy, 1 — 1y~ 0) +
3
(ay, +asu; + a,u) K (~uy 1 — uy,—1,,0) + (@, + aguy +ayu, ) K (—uy | — 4,~11,,0) +
(a4 +agis + aguu, + au, +agu, +a)K°(~u, 1 —u,,-u,,0),

(78)
and the J; inner integration as L,(%,,u,) which is equal to,

ay K (uy — 1= u,0,u, — 1)+ ay K (uy — 11— 1,0, — 1)) + @, K (uy — 1,1 = 0,0, u, — 1))
+(ay, +agu +a,w)K (uy —u,1—1,0,u, —u) +(a,, +asu, +a,u)) K> (uy —u 1 —u,0,u, —u,)
+ (@ +agi} +aguu, +ayu, +ag, +a) K (u, —u 1~ u,0,u, —u).

(79)

This allows the original singular integral to written in compact form as a regular integral
of the following form,

1§
J‘ j‘ j ?f%q%d’hdﬂldézd&
6=05,=07=017,=0

11 (80)
i) ] {xg@on +Lxg@nan-10)+ 1 xgono Jodndo

In (80) the appropriate Duffy transformations are used in each part of the integrand to
map the relative coordinate @ = (u,,u,) to (w,7n) space.

Analytic Integration over @

The integrand in (80) contains terms of the form, @"e*°%** and can be
integrated analytically with respect to @. The algebraic complexity of the analytical
integration is such that it is prudent to utilize a modern computer algebra system (CAS)
to perform this tedious work. In addition, these CAS tools can generate Fortran or C
code directly and aid immensely in implementing these results into existing or new
computer codes.
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The remaining integration over 77, must be performed numerically. However, the

analysis presented in this section has transformed the original 4-dimensional singular
integral into a one-dimensional non-singular numerical integration.

Common Edge

The instance where the two triangular facets share a common edge is formulated
so the two triangles share the vertices, V, and V,. The relative distance vector,

F-F'=(n —él)vl +(m, =& -1y +§1)V2+§IV3 —7]1{73'

IR ~ 2 (81)
=4(V; =V, = Vi) +5,(V,) + 5 (V; - V3)

is a function of the three coordinates, u,,u, and&. The scalar distance R =|F -7/, is

zero only when u, =u, =& =0. In order to remove the singularity that arises in this
case, a 3 dimensional Duffy transform is used in the coordinate system defined by
u,u,and &,.

The original 4-dimensional integral (9) in simplex coordinates was decomposed
into a sum of 6 separate integrals,

1 & 1 = _ .
I _[ J. ? i%—%dnzdﬂﬂgzdéﬁ = ZEi . (82)
&=0£&=07,=0173=0 > i=1

In each of the six integrals a 3-dimensional Duffy transform will be applied and the six
separate integrals will be summed together to complete the transformation of the original
singular integral into a non singular integral of lower order.

Starting with the integral,

1 §~u-uy)

El':])‘ _(.Z I _[ %h(g’ﬁ)g(aafl)d§2d§ldu2dul’ (83)

y=-luy=th §=—u &§=-u

let Z = —u , and noting that g(#,£,) does not depend on &, , express E; as,

§-(5-5) 1

E= | [eczé) | S IE 2 Mg dE doyds,. (84)

=0 2;=0 {j=z, &=x

The inner integral, over &,, can be performed analytically since 4 is a simple polynomial
in &,. The domain of integration of the remaining 3 dimensional integral is shown in

Figure 4, it is a tetrahedral with one point at the origin. Equation (84) is not in a form for
a direct Duffy transformation, and must be altered. The order of the integration can be
changed in a cyclic manner, with the aid of Figure 4, so that E, can be re-written as,
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1§ z G~(z-23)
_ 1, - _
E, = I j Ig(—Z,é,) Zh(fa‘“z)d‘fzdzzdzldél- (85)
&=02,=0 z,=0 &=z

Equation (85) is now in a form for a direct Duffy transform. The required coordinate
transform can be written directly,

¢ @
Z |=| ox |. (86)
Z, X, X,

The Jacobian of the transformation is @’x,. Equation (85) now can be written in

standard form where the coordinates of the g and 4 functions are expressed in terms of
the original  and & coordinates,

1 1 1 a(l-x+xx,)
[ ] | ecan-ann.0) [ o hanonn,0,6)0E o xdudsdo. (87)
=0 =0 x,=0 Sr=amix,

The integral E, is treated in a similar fashion,

1w l-u &

[ ] $rEme@&nedsdud, (88)

=0 uy=0 §=0£,=0

E,

where the substitution, » = & +»,, produces,

1 u 1

E,= | [ g(iZ,r)Tl%h(r,é,ﬁ)dédrduzdul. (89)

=0 u=0 r=u & =0

The order of integration is altered similar to (85),
1 r r-u,
1 _ 1 1 .
B, = | [ | g@r) [ —h(r.&,0)d&du,dudr. (90)
5‘2:04

r=0 u;=0 u,=0

The 3-dimensional Duffy coordinate transformation for this integral is,

r ®
u |=| ox |. 91)
u, WX, X,

Using (91) the final form of E, is,
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w(l-x)

j j j glax,axx,,0(1-x)) | < e,z 0(1-x,), EE 0 xdx,dxda .
=0 x=0x,=0 &H=0
(92)
The third integral,
14y -1 1 -
j | ] T 2C .. 8)dE,dE dusdu, (93)
u=-lu=04§=m~y;, §=0
is transformed by substituting, z, = —,,z, = u,,
1 1=z i fr‘(zz“‘zj)l _
Bo=[ | [ 8@&) | JHE2)dedbdeds, (94)
7=0 2,=0 §i=2,+z &=0
and r =z, +z,,
11 G(z+z) 1
=[] j HCREA I S LCRERALLELL N (95)
7=0 r=z, &=r §=0

The integration domain for (95) is shown in Figure 5, and it is slightly different than the
domain of E;. The domain is a tetrahedral with one corner at the origin but it is oriented
along the r axis. The cyclic reordering of the integration over this domain lets E; be re-
written as,

1 & »r G~(z+)
1
E,= [ | [gG.ré) | 21zr8,8,)dgdzdrdg,. (96)
£=0r=02=0 &=0

The 3-dimensional Duffy coordinate transformation for this integral is,

& w
ril=| ox | 97)
Z, @ X, X,

Es in final form, written with g and h as functions of the original simplex and relative
coordinates, becomes,

i

The remaining integrals are treated in a similar fashion and the results are summarized
here.

1 w(l-x)
jg( axx,,0(1-x),0) | e, o1 - x,),0,5)dEw xdx,dxdw.  (98)

£=0

" ey
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1 1
= [ | [st-om—oxx, 00 (0,5,%) 0 xdvdydo, (99)
=0 x,=0 x,=0
1 1 1
= [ | [ete@n.on5%,00-x)h(@,5,x,)0" xdxdvdo, (100)
=0 =0 x,=0
I 1 1
E= | [ [gt-oxx,ol-x) 0k (0x,x)0 xdxdgdo, (101)
=0 x,=0 x,=0

1 1
= j j I g(amyx,,ox (1-x,),0(1 - x,x, ))h4(w>x1> Xy )w2x1dx2dx1d(0 ,  (102)

®=0 x,=0 x,=0
1 1 1

E’ = I I Ig(—mxlxz,—mxl,a))hs(a),xl,xz)wledxzdxlda), (103)
=0 x;=0 x,=0
1 1 1

= _[ _‘- Ig(mxl,alxlxz,a)(l—xl))h‘s(a),xl,xz)a)ledxzdxlda). (104)
o=0 x=0 x,=0

The common edge Galerkin inner product 4-dimensional integral (82) can now be
expressed as a single integral with a regular integrand,

f I J Iﬂ@dﬂzdmdéd; j j iigih"wledxzdxlda). (105)

§=05,=0m=0 rh—O ®=0 x,=0 x,=0 i=1

Analytic Integration over &,

The integrand of (105) is the product of the Greens function, the Jacobian of the
3-dimensional Duffy transform and a series of polynomials. The exact form of the

polynomials, %', are derived from the following analytic integrals.

w(l-x+xx)
1
Hox,x)= [ Sh-ax-ong,0.6)E (106)
Sy=axixy
a)(l—xl)l
H(@,5,%) = [ - hlew, o, 00 -x).6)5 (107)
§,=0
w(l-x)
B(o.x5,5)= | h-onx,o(l-x),0.8)dE, (108)

50
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o(l-xx;)

W(o,x,5)= | —hexx,en(-x,)00-xx,),5)ds, (109)
&= (1-x;)
1
H@x,0)= [ Jh-ann-on,0.8)dg, (110)
§y=ax
w(l-xx,)
H@x,5)= | Shax,enn,0(1-x),6)ds, (111)
£=0

The integrand of the A’ expressions is given by,

h(upuzaélaéz) = /-5]‘ 'ﬁk ~4/k
= B&(u + &)+ B6(u, + &)+ Bl (u + &)+ B(u, +£,)E,  (112)
+ Bséy + Bl + B (w4 + &) + By (u, + &)+ By -4/k’

In general, the A’ can be written in this form,

b
; 1
H(@,%,%,) = [ Jhan,,6,6:)d¢,

b
= (@& +a,8, +ads, (113)
b +a’ b+a
=(b—a){ar1 3 +a, 5 +a3}
where,
a, = :84
a, = By + B, + (B, + )6, + B + B (114)

ay =(B& + Bu +(B6 + Bu, +(Bs + Br)é + ﬂlé}z + 5y - 41k

the S are given in (42). In (105) the integration over @ can be performed analytically

because the integrand contains terms of the form, @"e™“**  The final result is that 2 of
the integrations in the original 4 dimensional integral can be performed analytically.

Common Vertex

The case where the two triangles share a common vertex is a less complex
problem. If the common vertex is chosen to be V, then this point is mapped to the origin
in the simplex coordinate space. The singularity arising from the Greens function spatial
distance term,
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=|?—7'l,

expressed in the simplex coordinates becomes,

F—7'=(n - fl)vl +(¢, ‘"52)\72 +'§1v3 —(m, '“772)‘72’ _Ulvsl- (115)

Equation (115) is zero only for,

=1m,=6=§=0,
which is the origin of the 4 dimensional simplex coordinate space. The integral,
1

1 &
||} 2D anacae, (116
§=05,=073=077,=0

with the isolated singularity at the origin can be regularized directly by using a 4
dimensional generalized Duffy transformation to eliminate this singularity. In order to
accomplish this, the order of the integration in (116) is first changed slightly,

_“ I _“ I f(é: 1 )d mdmd&dé, = _" I I J‘ g(—gl)'dﬂzdédmdé, (117)
§=0£=0m=0 ’72‘0 &=0m=0&=07,=0 (5
and the domain split into two parts,

j _'. _r 'r}[{((‘f;“g—idﬂzdézdﬂxdé
§i=0 =0 £,=07,=0
L & §

j. I J. j'f—gél)dﬂzdgzdmdé _[ j j IMdnzdédﬂldé
=0 7=0 52-002-0 &=0 7= &=011,=0 R(&.7

(118)

In the second integral,

f J f I Mdmdédmdé, (119)
&=0m=¢ 52‘0'72—0
reverse the order of the 7,,£,, integration,

j _[ j I%Z’:i)dﬂzdédmdé J j j J‘_g%_ﬂ)dnzd‘fzdgldm’ (120)
&=07=4, §,=0 ;=0 17=0 §;=0 §,=01,=0

which is identical to the first integral under a coordinate interchange, (£,7) = (7,£).
The common vertex integral can now be written as,
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ﬂfm, 084 f&Em  [@T.5),
=0 =0 ";[0 ’b‘[o R(é: 772d77!d§2d§1 §1J‘.0 'h[o §2J:O rh‘[O R(g n ) R(’? 5 ) nzdézdﬂl d§1 ‘
(121)

The Duffy transformation needed to eliminate the singularity at the origin in this integral

This produces the following result,

gj-ogj;) ’L mj_o%—”ldmdmdédﬁ Q[Oz[:%j;ozj_oégg Z; ;; g’] ga)3zzdz3dz2dzldw.

(123)

The integrand has been left written in terms of the simplex coordinates because of the
coordinate interchange. To simplify the integrand is expressed as,

fED _(BEOBD 1) 5o 1,5 5
R(E.7) ( 4 ]g(g’”) = e me&.m). (124)
The first term, A(&,7), can be expressed as a polynomial,

h(E,ﬁ) = agim +adm, +adon +amé, +ald +al, + a;n, +agi, +ay (125)

The Greens function depends only on the distance,

F—7'=(m —‘51){11 +(¢ “‘fz)vz +51v3 —(n, ‘ﬂz)vzl —771{/;’

- . (126)
=a& +bé, +cn +dn,,
where,
a=V,-V,+V,,b=-V,,6=V,-V,-V1,d = V.. (127)
The scalar distance function is expanded in a polynomial,
RET)=lGg +b¢& +en +dn, ) ag +be, +en, +dn,), (128)

in compact form,
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i=1 j=1

R(E:ﬁ) = [zzai,jé:ifj + ﬁi,jé:inj + Xi,jgjni + 51,1'771'77,) . (129)

The form with the coordinate exchange is,

B P 1/2
R(@,&)= (Zzai,jniﬂj + ﬂi,jgjni + Zi,jé”]j + 5i,j51§j} . (130)
i=l j=1
The Duffy coordinate transform introduces a @ into each of the simplex
coordinates. The distance function polynomial in the Greens function allows a single @
to be brought out from under the square root. The Jacobian of the transform cancels this
term from the denominator of the Greens function and eliminates the singularity.

The original integral over the pair of triangular facets with a common vertex is
now written as,

% J | [ [GE e+ .82 sy deegdedn. (131)

=0 2,=0 z3=0

The integration over @ can be performed analytically because the integrand contains

terms of the form, @"e*°*® The remaining integrations must be performed
numerically.

Summary and Conclusion

The Galerkin solution to the electric field integral equation using RWG basis
functions has and will continue to be popular for simulating electromagnetic phenomena.
Fundamental to achieving an accurate result is the numerical accuracy of the impedance
matrix elements that are used in computing the solution. The material presented here
shows how to improve the computation of matrix elements that involve singular surface
integrals by removing the singularity in the integrand through a series of coordinate
transforms. The formulation provided an additional benefit by reducing the dimension of
the 4-dimensional integrations that result from the Galerkin approach by 1, 2 or 3
depending on the degree of overlap between the two triangular patches.

This analysis can be extended to curved geometries, quadrilateral patch geometry
and other integral equation operators encountered in electromagnetics. The extension of
these methods to hypersingular integral equation operators will provide a complete
foundation for highly accurate method of moments numerical solutions.

The material presented here is a modernization of the classic RWG method. The
next step in this modernization process is to utilize computer algebra software, e.g. Maple
or Mathematica, to complete the tedious algebraic manipulations and analytic
integrations. The ultimate goal is to generate modular Fortran90/95 code that could be

used as a foundation for modern method of moments (MoM) electromagnetic analysis
tools.
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Figure 1. Rao, Wilton, Glisson (RWG) vector basis function. The basis function
consists of a pair of triangular patches, with areas Aj, and A, which share a common edge
with length /,. The expansion of the unknown surface electric current in terms of the

vector function f(F) is associated with the edge.
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u; 4 Uz A
1 1
u=1-§;
1 uy
0 > 0 >
&1 &
ulz'E_,l uy=-&)

Figure 2. The domain of integration of the 4 dimensional Galerkin inner product integral
expressed in terms of relative and simplex coordinates. This is used for interchanging the
order of integration in the integrals I' through I°.
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u2 u2 u2

Figure 3. The domain of integration in relative coordinates for the three integrals, J;, J,
and J3, that result from the common facet case.
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&1

Z)

Figure 4. The domain of integration of the integral E; for the common edge case. A unit
cube is shown for reference, the red lines define a tetrahedral region which border the
domain of integration of the E; integral.
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Figure 5. The domain of integration of the integral E; for the common edge case. A unit
cube is shown for reference, the red lines define a tetrahedral region which border the
volume of integration of the E; integral.



